数学系
金融数学、应用数学
物理系
光电子技术与通信、
信息功能材料
化学系
材料化学、分析科学
生物系
应用生物化学与食品安全、 海洋生物技术与药物开发
海洋生物研究所
生物医药与先进材料
研究中心

旧版链接


澳门mgm美高梅官方网站数学系青年教师于海峡副教授在基础数学研究领域取得重要进展




最近,澳门mgm美高梅官方网站数学系青年教师于海峡副教授在基础数学调和分析研究领域中奇异积分算子理论等方面取得重要研究进展,相关成果以论文的形式发表在Journal of Functional AnalysisThe Journal of Fourier Analysis and Applications等国际著名学术期刊。

调和分析中重要的未解决的问题--SteinWolf 奖得主)关于带Lipschitz向量场的奇异积分算子的Lp有界性猜想,一直是调和分析领域的重点研究对象之一,一大批著名的调和分析专家(包括E.M. SteinJ. BourgainFields 奖得主),M. ChristS. WaingerA. NagelM. LaceyC. ThieleX. Li S. Guo等)在这个问题上做出过许多杰出的工作。沿变曲线的Hilbert变换作为这个问题的曲线化情形也受到广泛的关注。数学系教师于海峡和合作者在与Stein猜想相同的限制条件和指标条件下, 建立了局部光滑估计和非齐次的平方函数估计,从而对一类曲线获得了沿变曲线的Hilbert变换的Lp有界性,这为该方向的研究提供了新的方法和思路,具有重要的理论价值。该项工作得到了mgm美高梅官方科研启动基金的资助。该项工作整理的论文Hilbert transforms along variable planar curves: Lipschitz regularity2022年发表在Journal of Functional AnalysisVolume 282Issue 4论文链接:https://doi.org/10.1016/j.jfa.2021.109340

Stein猜想中的向量场是二元函数且满足Lipschitz 正则性,但如果该向量场是一元函数,则Lipschitz 正则性的限制条件也许是可以不要的,相应的问题还未被完全解决。数学系教师于海峡和合作者在向量场是一元函数且仅是可测函数的条件下, 建立了相应的Carleson 变换的Lp估计和Shifted 极大算子的向量值估计,从而对一类曲线获得了沿变曲线的Hilbert变换(单变量情形)的Lp有界性。该一元向量场仅是可测函数的一个重要意义在于相应的结果可以看作是一个极大算子的估计。该项工作得到了mgm美高梅官方科研启动基金的资助。该项工作整理的论文Lp Boundedness of Carleson & Hilbert Transforms Along Plane Curves with Certain Curvature Constraints2022年发表在The Journal of Fourier Analysis and ApplicationsVolume 28Issue 1,论文链接:https://doi.org/10.1007/s00041-021-09902-6

Journal of Functional AnalysisThe Journal of Fourier Analysis and Applications是数学领域国内外公认的一流期刊,致力于发表高水平原创性的成果,具有很高的学术声誉。此次数学学科发表若干高水平成果,再次证明了数学学科教师有跻身世界数学前沿研究的实力。作为mgm美高梅官方重点发展的优势学科,数学学科在科研项目和学术论文成果等多方面均有稳定产出,mgm美高梅官方数学学科将一如既往,争取获得更多更好的科研成果。

图文:于海峡  李健

图形用户界面, 文本, 应用程序, 电子邮件描述已自动生成

文本描述已自动生成

澳门mgm美高梅官方网站